Efficient Bayesian inference for natural time series using ARFIMA processes
نویسندگان
چکیده
Many geophysical quantities, such as atmospheric temperature, water levels in rivers, and wind speeds, have shown evidence of long memory (LM). LM implies that these quantities experience non-trivial temporal memory, which potentially not only enhances their predictability, but also hampers the detection of externally forced trends. Thus, it is important to reliably identify whether or not a system exhibits LM. In this paper we present a modern and systematic approach to the inference of LM. We use the flexible autoregressive fractional integrated moving average (ARFIMA) model, which is widely used in time series analysis, and of increasing interest in climate science. Unlike most previous work on the inference of LM, which is frequentist in nature, we provide a systematic treatment of Bayesian inference. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g., short-memory effects) can be integrated over in order to focus on long-memory parameters and hypothesis testing more directly. We illustrate our new methodology on the Nile water level data and the central England temperature (CET) time series, with favorable comparison to the standard estimators. For CET we also extend our method to seasonal long memory.
منابع مشابه
Forthcoming in the Journal of Econometrics Bayesian Analysis of Long Memory and Persistence using ARFIMA Models
This paper provides a Bayesian analysis of Autoregressive Fractionally Integrated Moving Average (ARFIMA) models. We discuss in detail inference on impulse responses, and show how Bayesian methods can be used to (i) test ARFIMA models against ARIMA alternatives, and (ii) take model uncertainty into account when making inferences on quantities of interest. Our methods are then used to investigat...
متن کاملDifferential Geometry of Arfima Processes
Autoregressive fractionally integrated moving average ARFIMA pro cesses are widely used for modeling time series exhibiting both long memory and short memory behavior Properties of Toeplitz matrices associated with the spectral density functions of Gaussian ARFIMA processes are used to compute di erential geometric quantities INTRODUCTION Time series data occurring in several areas such as geol...
متن کاملCollapsed Variational Bayesian Inference for Hidden Markov Models
Approximate inference for Bayesian models is dominated by two approaches, variational Bayesian inference and Markov Chain Monte Carlo. Both approaches have their own advantages and disadvantages, and they can complement each other. Recently researchers have proposed collapsed variational Bayesian inference to combine the advantages of both. Such inference methods have been successful in several...
متن کاملAn Evaluation of ARFIMA (Autoregressive Fractional Integral Moving Average) Programs
Strong coupling between values at different times that exhibit properties of long range dependence, non-stationary, spiky signals cannot be processed by the conventional time series analysis. The autoregressive fractional integral moving average (ARFIMA) model, a fractional order signal processing technique, is the generalization of the conventional integer order models—autoregressive integral ...
متن کاملComputation of the autocovariances for time series with multiple long-range persistencies
Gegenbauer processes allow for flexible and convenient modeling of time series data with multiple spectral peaks, where the qualitative description of these peaks is via the concept of cyclical long-range dependence. The Gegenbauer class is extensive, including ARFIMA, seasonal ARFIMA, and GARMA processes as special cases. Model estimation is challenging for Gegenbauer processes when multiple z...
متن کامل